Theory of simultaneous control of orientation and translational motion of nanorods using positive dielectrophoretic forces

نویسندگان

  • Brian Edwards
  • Nader Engheta
  • Stephane Evoy
چکیده

The manipulation of individual submicron-sized objects has been the focus of significant efforts over the last few years. A method to arbitrarily move and orient a set of rod-shaped conductive particles in a region defined by a set of electrodes using positive dielectrophoretic forces is presented. While the orientation of each particle is directly specified through the angle of the local electric field, its position is indirectly controlled through the applied force. Each electrode is approximated as an unknown point charge and an induced dipole. Since each induced dipole results from the combination of all other sources, a set of linear constraints are derived to enforce the self-consistency of the system. Additionally, the force and orientation of each particle also form an additional set of linear constraints. This combined set of constraints is then solved numerically to yield the sources required to induce the desired orientation and motion of each particle. It is observed that the minimum number of electrodes that can be used to control a set of N particles is 4N+1. Numerical simulations demonstrate that the control of a single nanorod (diameter of 70 nm; length of 1.4μm) in the midst of a realistic electrode array can be accomplished under practical conditions. In addition, such control of orientation and motion can be achieved over an ample region in the vicinity of each rod. Comments Copyright 2005 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. Reprinted in Journal of Applied Physics, Volume 98, Issue 12, Article 124314, December 30, 2005, 7 pages. Publisher URL: http://dx.doi.org/10.1063/1.2148627 This journal article is available at ScholarlyCommons: http://repository.upenn.edu/ese_papers/265 Theory of simultaneous control of orientation and translational motion of nanorods using positive dielectrophoretic forces Brian Edwards and Nader Engheta Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 Stephane Evoy Department of Electrical and Computer Engineering and National Institute for Nanotechnology, University of Alberta, Edmonton AB T6G 2V4, Canada Received 1 June 2005; accepted 9 November 2005; published online 30 December 2005 The manipulation of individual submicron-sized objects has been the focus of significant efforts over the last few years. A method to arbitrarily move and orient a set of rod-shaped conductive particles in a region defined by a set of electrodes using positive dielectrophoretic forces is presented. While the orientation of each particle is directly specified through the angle of the local electric field, its position is indirectly controlled through the applied force. Each electrode is approximated as an unknown point charge and an induced dipole. Since each induced dipole results from the combination of all other sources, a set of linear constraints are derived to enforce the self-consistency of the system. Additionally, the force and orientation of each particle also form an additional set of linear constraints. This combined set of constraints is then solved numerically to yield the sources required to induce the desired orientation and motion of each particle. It is observed that the minimum number of electrodes that can be used to control a set of N particles is 4N+1. Numerical simulations demonstrate that the control of a single nanorod diameter of 70 nm; length of 1.4 m in the midst of a realistic electrode array can be accomplished under practical conditions. In addition, such control of orientation and motion can be achieved over an ample region in the vicinity of each rod. © 2005 American Institute of Physics. DOI: 10.1063/1.2148627

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinematic and Dynamic Analysis of Tripteron, an Over-constrained 3-DOF Translational Parallel Manipulator, Through Newton-Euler Approach

In this research, as the main contribution, a comprehensive study is carried out on the mathematical modeling and analysis of the inverse kinematics and dynamics of an over-constraint three translational degree-of-freedom parallel manipulator. Due to the inconsistency between the number of equations and unknowns, the problem of obtaining the constraint forces and torques of an over-constraint m...

متن کامل

Dimethylamine Controlled Sol-Gel Process to Grow ZnO Nanorods

ZnO nanorods were prepared using dimethylamine (DMA) controlled Sol-Gel process. Dimethylamine was added as an additive to control the sol-gel process for growing ZnO nanorods. DMA would exhibit stabilizing effect, promote dissolution of precursor and control the rate of sol-gel reactions because of its basic nature and significant miscibility. The Structural and microstructural properties of t...

متن کامل

Simultaneous measurements of electrophoretic and dielectrophoretic forces using optical tweezers.

Herein, charged microbeads handled with optical tweezers are used as a sensitive probe for simultaneous measurements of electrophoretic and dielectrophoretic forces. We first determine the electric charge carried by a single bead by keeping it in a predictable uniform electric field produced by two parallel planar electrodes, then, we examine same bead's response in proximity to a tip electrode...

متن کامل

Electric Tweezers: Experimental Studies of Positive Dielectrophoresis-Based Positioning and Orientation of a Nanorod

The manipulation of individual micrometer sized objects has been the focus of significant research efforts over the last few years. A previously proposed method for the arbitrary manipulation of nanoparticles is experimentally demonstrated. This method employs dielectrophoretic forces for the planar control of the motion and orientation of such nanoparticles between a set of microfabricated ele...

متن کامل

Path Following and Velocity Optimizing for an Omnidirectional Mobile Robot

In this paper, the path following controller of an omnidirectional mobile robot (OMR) has been extended in such a way that the forward velocity has been optimized and the actuator velocity constraints have been taken into account. Both have been attained through the proposed model predictive control (MPC) framework. The forward velocity has been included into the objective function, while the a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016